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Abstract - Target tracking performance is determined by 
the fidelity of target mobility model (F, Q), tracking 
sensor measurement quality (R), and sensor-to-target 
geometry (H). A tracking sensor manager has choices in 
sensor selection/placement (H), waveform design (R), and 
filter tuning (F and Q), thus affecting the tracking 
performance in many ways. This paper concerns with the 
geometry aspect of sensor placement so as to optimize the 
tracking performance. Recently, a considerable amount 
of work has been published on optimal conditions for 
instantaneous placement of homogeneous sensors (same 
type and same measurement quality) in which the targets 
are either assumed perfectly known or the target location 
uncertainty is averaged out via the expected value of the 
determinant of the Fisher information matrix. In this 
paper, we derive conditions for optimal placement of 
heterogeneous sensors based on maximization of the 
updated Fisher information matrix from an arbitrary 
prior characterizing the uncertainty about the initial 
target location. The heterogeneous sensors can be of the 
same or different types (ranging sensors, bearing-only 
sensors, or both). The sensors can also make, over several 
time steps, multiple independent measurements of 
different qualities. 

Keywords: Performance Evaluation, Fisher Information 
Matrix, Sensor Placement, Heterogeneous Sensors, 
Measurement Quality 

1. Introduction 

Target tracking performance is determined by the fidelity 
of target mobility model (F, Q), tracking sensor 
measurement quality (R), and sensor-to-target geometry 
(H). The effectiveness of a sensor update is implicitly 
dependent of the range to target via signal to noise ratio 
(SNR) for a ranging sensor while explicit for a bearing-
only sensor. A tracking sensor manager has choices in 
sensor placement (H), waveform design (R), and filter 
tuning (F and Q) to control tracking performance. This 
paper is concerned with the geometrical aspect of sensor 
placement so as to optimize the tracking performance. 

Placement of m sensors around a target has drawn a 
considerable amount of attention recently. Interesting 
results are summarized in a recent paper [1] where the 

determinant of the Fisher information matrix (FIM) is 
maximized so as to obtain necessary and sufficient 
conditions for optimal placement of ranging sensors, 
bearing-only sensors, and time of arrival (TOA) and time 
difference of arrival (TDOA) sensors, respectively. 
Similarly, the use of the trace of the Cramer-Rao lower 
bound (CRLB), which is the inverse of the FIM, is 
considered in [5, 6, 7] for TDOA measurements. 

As pointed out in [2], a majority of work in optimal sensor 
placement including the references cited above make a 
fundamental assumption that the target location is known 
perfectly, which is hardly practical but establishes some 
theoretical bounds. When the uncertainty in target location 
is characterized by a probability distribution such as 
truncated radially symmetric distributions, the expected 
value of the FIM determinant is used in [2] to obtain useful 
results with a combination of analysis and simulation. 

Furthermore, the above references assume homogeneous 
sensors. That is, they are of the same type and of the same 
quality for their respective necessary and sufficient 
conditions of optimal placement to hold.  

In this paper, we consider the problem of optimal 
placement of heterogeneous sensors in tracking of 
uncertain targets. By heterogeneous, we mean the use of 
sensors that are different in sensor type and measurement 
quality. In addition, to account for target uncertainty, we 
use the updated FIM to derive optimal placement 
conditions. 

Different from previous work, which is mostly formulated 
in a static snapshot fashion, we consider a tracking 
application in which the time factor is involved and the 
sensor placement actually occurs in time and in space. As 
an example, a number of UAVs receive a handover 
message from a surveillance aircraft in a layered sensing 
scenario and they coordinate to track a designated target in 
a cooperative manner. Since a UAV is flying at a constant 
altitude and solves for a ground target location, a 2-D 
model is reasonable and will be considered as in most 
sensor placement literature.  

Assume that the tracking sensors under consideration will 
make a unit movement per unit time and each movement 
has an associated cost. Due to higher risk for covertness 
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and survivability, it is reasonable to assume that a radial 
movement to get closer to a target has a higher cost while 
tangential movement carries a constant cost. A UAV thus 
faces four choices: 

• Do not move and take independent measurements. If the 
current geometry is favorable, the accumulation of 
independent measurements has the effect of reducing 
measurement errors. A steady state is soon reached and 
no further reduction can be expected for this geometry. 

• Move radially toward the target. This runs a higher cost 
for movement but has the benefits of increasing SNR and 
improving the measurement quality, particularly for 
bearing-only sensors. 

• Move tangentially around the target. This allows 
maximum change in viewing geometry if moving in the 
direction of the principal axis of the error ellipse. 

• A combination of all the above. 

The above approach decides a move from one time step to 
next and is therefore a greedy one. The objective is to seek 
the best outcome in terms of best accuracy in minimum 
time and cost with least risk. 

The rest of the paper is organized as follows. In Section 2, 
the sensor models, optimality criteria, and information 
updating equations are introduced. Section 3 presents three 
strategies for placing two homogenous and heterogeneous 
sensors, either co-located or distributed. Simulation results 
are analyzed in Section 4. Finally, concluding remarks are 
provided in Section 5.  

2. Information Updating 
Consider a target with an unknown state (e.g., position and 
velocity) x and the i-th sensor with a known state xi. The i-
th sensor’s measurement is given by 

ii
l

i vfz i += ),( xx  (1) 

where ),( ⋅⋅ilf  is typically a nonlinear equation, the 
superscript li ∈ {r, θ, φ, …} is a label indicating a 
particular type of nonlinearity for the i-th sensor: range, 
azimuth, and elevation, and vi is the sensor measurement 
error, assumed to be a zero-mean Gaussian with variance (

ilσ )2, denoted by N{0, ( ilσ )2}. In this paper, the 
dimension of the state vector x is n. 

Given m such sensors, the relationship between the 
measurements and target state x can be represented in 
matrix-vector form as 

vxfz += )(  (2)  

where  

[ ]m
T zzz 21=z  (3a) 

[ ]m
T vvv 21=v  (3b) 

[ ]),(),()( 1
1

m
ll mff xxxxxf =  (3c) 

and v ~ N(0, R) where the superscript T stands for vector 
or matrix transpose. 

For an unbiased estimate x̂  of x, the Cramer-Rao lower 
bound (CRLB) states that: 

)()(})ˆ)(ˆ{( 1 xxxxxx PM ==≥−− −CRLBE T
 (4a) 

where M(x) is called the Fisher information matrix (FIM) 
and its ijth element is defined as: 
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j
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(4b) 

It is clear from (4a) that if M(x) is singular, no unbiased 
estimator exists for x with a finite variance. When the 
measurement noise is Gaussian, the FIM is given by: 

HRHxfRxfx xx
11 )()()( −− =∇∇= TTM  (5) 

where ∇xf is the Jacobian of the measurement vector f with 
respect to x, denoted by H. 

In [1], the determinant of the FIM is maximized so as to 
obtain necessary and sufficient conditions for optimal 
placement of ranging sensors, bearing-only sensors, and 
time of arrival (TOA) and time difference of arrival 
(TDOA) sensors, respectively. Since f is also a function of 
{xi, i = 1, …, m}, the optimization can be formulated as: 

( )),...,,(detmaxarg},...,{ 1},...,{

**
1

1
mm

m

xxxxx
xx

M=

 
( )HRH

xx

1

},...,{
detmaxarg

1

−= T

m  
(6)

 
Note that the FIM is evaluated at x, which implicitly 
assumes that the target location is known perfectly. In 
practice, however, only a coarse estimate of the target state 
is available. Assume that the prior on the target state is 
characterized by a distributed denoted by p(x). The 
expected value of the determinant of the FIM is used in [2] 
for optimal sensor placement: 

( )∫= xxxxxxx
xx

dpmm
m

)(),...,,(detmaxarg},...,{ 1},...,{

**
1

1

M
 

(7) 

In this paper, we consider a Gaussian-distributed initial 
target state as x ~ N(x0, P0) and perform optimal sensor 
placement based on the updated FIM evaluated around the 
predicted state x0. 

Given the initial target state distribution as x ~ p(x) = 
N(x0, P0), the maximum a posterior (MAP) estimator is 
actually a nonlinear least squares estimator given by 

( ) ( ) ( ) ( )[ ]0
1

00
1 )()(minargˆ xxPxxxfzRxfzx

x
−−+−−= −− TT  (8) 

The covariance of the state estimate can be approximated 
by linearizing f(x) about the mean of the prior. Specifically, 
one assumes that  

)()()( 00 xHxfxf x −+=  (9a) 
[ ]m

T hhH 1=  (9b) 
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where ∇xf stands for the gradient of the scalar function f 
with respect to x. 

By inserting (9) into (8), it is easy to show that the linear 
least squares estimate of the target state is  

( ))()(ˆ 0
111

0
1

0 xfzRHPHRHxx −++= −−−− TT  (10) 

and the covariance of the state estimate for the posterior 
distribution is  

11
0

1 )(})ˆ)(ˆ{( −−− +=−−= PHRHxxxxP TTE  (11) 

The covariance given by (11) is also the CRLB derived 
from the joint distribution of the target state and 
measurements. From (4a), M = P-1 and the information 
updating equation is given by 

M = M0+HTR-1H. (12) 

Usually, the sensors are spatially disparate so that the 
measurement errors vi are statistically independent with 
variance 2

iσ .  Then, the information update equation can be 
rewritten as 

,~~
~
11

1
20

1
20

T
ii

m

i i

T
ii
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i i
hhMhhMM ∑∑

==

+=+=
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(13a) 

where  

i

i
i h

hh =~  and .~
2

2
2

i

i
i

h
σσ =

 
(13b) 

Inspection of (13) reveals that each sensor provides a rank-
one positive definite addition to the information matrix, 
which increases the “size” of M. The unit-norm 

ih~  
represents the angular orientation of the single sensor 
contribution in information space, and the reciprocal of 2~

iσ  
represents the power (or quality) of the sensor 
measurement. 

Table 1 provides the value of 
ih~  and 2~

iσ  for 2-D range and 
bearing measurements in Cartesian, polar (r, θ), and 
spherical (r, θ, φ) coordinates, respectively. In the 2-D 
case, the angle θ of the LOS from the sensor to target is 
measured relative to the x-axis. Table 1 reveals that the 
orientation 

ih~ of range sensors align with the LOS vector 
between the sensor and the target. On the other hand, the 
orientations of bearing sensors are orthogonal to this LOS 
vector. The quality of the range sensors only depends on 
the actual measurement variance. However, for a given 
angular measurement error, the quality of sensor degrades 
as the distance to the target increases because the 
corresponding state value is a cross-range quantity. 
Furthermore, it is reasonable to assume that the 
measurement error also increases as the target/sensor 
distance expands due to a decrease in the SNR. Without 

accounting for environmental effects, the measurement 
error for a point target is ideally invariant to the angular 
coordinates. As a first order approximation, it is reasonable 
to assume that 

ih~  and 2~
iσ  only depend on the angular and 

range coordinates of the sensor, respectively, in a polar 
coordinate system.  

Table 1. Sensor Measurement and Linearized Equations in 2D 

 

3. Optimal Placement in Time and Space 
For 2D scenarios, a minimum of two sensors are sufficient 
to obtain an optimal solution. The two sensors can be of the 
same type, observing a target from two different directions 
at the same time. Or the two sensors can be of different 
types, observing the target from the same direction (co-
located) at the same time. This is an instantaneous 
placement with single-look optimality. For stationary or 
slow-moving targets, sensors can stay at the same place or 
move to different locations while taking multiple 
measurements. This is a temporal placement with multiple-
look optimality. Conditions for optimal placement are 
derived below. 

3.1 Optimality Criteria 

Assume that the number of sensor measurements is 
constrained to be m. From (13a), it is easy to see that the 
trace of the updated information matrix for homogeneous 
measurements is 

( ) 20 ~trace
σ
mT += M

 
This trace of the information matrix accumulates the sensor 
quality of all sensor updates involved without regard to the 
effects of angular orientation of the sensors. The following 
theorem places a lower bound on the achievable updated 
covariance matrix P. 

Theorem 1. Consider an n×n covariance matrix P. Let M = 
P-1 be the information matrix. If trace(M) = T is constant, 
then trace(P) ≥ n2/T,  det(P) ≥ nn/Tn. The equality occurs if 
M = (T/n)I and P = (n/T)I. 

In short, Theorem 1 states that if the updated covariance 
matrix has equal eigenvalues, no other configuration of 
sensors could provide a tighter covariance error when the 
trace of the information matrix is fixed. In this case, the 
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error ellipse is actually circular for the 2D cases. Theorem 
1 is a generalization of a theorem in [3] and its proof is 
given in [8]. 

In general, each measurement can lower one eigenvalue of 
P0. For an n-dimensional state vector, it might be possible 
for n-1 measurements to lower n-1 eigenvalues to the value 
of the lowest λ1. However, depending on the spread of the 
eigenvalues, more measurements might be necessary to 
achieve a desired spherical error. Even if sensor placement 
cannot achieve a spherical state error, Theorem 1 provides 
intuition that it is best to try to achieve as close to uniform 
eigenvalues in the updated covariance as possible. 

3.2 Two Homogeneous Sensors 

In this section, we consider two homogeneous sensors that 
are of the same type and same quality. We will use the 
unified sensor model (13b) that accounts for both ranging 
and bearing-only measurements as listed in Table 1(a) and 
(b). Assume that the prior on the target state is x ~ N(x0, 
P0). Around x0, we can linearize the measurement 
equations for given x1 and x2, leading to observation 
matrices h1 and h1, respectively. By a proper coordinate 
rotation, we can diagonalize P0 such that we have a 
diagonal information matrix prior M0 = P0

-1 = diag([a, b]).  

Given the prior M0 = diag([a, b]), we want to place two 
sensors at 1

~h  = [cosθ1, sinθ1]T and 2
~h  = [cosθ2, sinθ2]T 

with an equal effective measurement error variance 2~σ  and 
to take a number of k independent measurements in the 
placement so as to accumulate the needed gain (accuracy). 
What are k, θ1, and θ2 that result in the maximum updated 
information matrix? 

According to (13a), the updated information matrix can be 
written as: 

)~~ ~~(~ 221120
TTk hhhhMM ++=

σ
, k ≥ 1 (14a) 
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222112

221122
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2

θθ
σ

θθθθ
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θθθθ
σ

θθ
σ

kbk

kka  (14b) 

To maximize the updated information matrix is equivalent 
to making (14b) a scaled identity matrix. To do so, we need 
to find k, θ1, and θ2 such that: 

0sincossincos 2211 =+ θθθθ  (15a) 

)sin(sin~)cos(cos~ 2
2

1
2

22
2

1
2

2 θθ
σ

θθ
σ
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(15b) 

From the condition (15a), we have: 

21 2sin2sin θθ + 0)cos()sin( 2121 =−+= θθθθ  (16a) 

⎩
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⇒ o90
0

21
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θθ
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(16b) 

The condition in the second row of (16b) is not valid in 
view of (15b) unless a = b. When a = b, the prior is 

circular. The condition indicates that two placements such 
that θ1 – θ2 = 90° provide an optimal solution, which is 
consistent with our intuition. 

Bringing the first condition (16b) into (15b) gives: 

⎟⎟
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That is, the optimal placement is for the two sensors at θ1 = 
-θ2 (symmetric about a principal axis of the error ellipse). 
The condition for such an optimal placement is: 

11
2

)(~

2
1 2

≤⎟⎟
⎠
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⎛
+−

k
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1
2

)(~2
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k

baσ
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It is easy to verify that when a = b, the angular sector 
between the sensors is: 

90
2
1sin2 1

21 ==− −θθ
 

(19) 

which is consistent with the second condition (16b). 

When | 2~σ (a – b)| > 2, there is no single look update (i.e., k 
= 1) to achieve an instantaneous optimality. However, a 
number of independent updates can be used to accumulate 
the required gain to ensure a solution. The number is given 
by: 

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧
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2
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2
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σ
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where sup{·} is the smallest of all integers that satisfy the 
condition and [·] stands for the least integer. 

When the condition for a solution (18b) is met, the angular 
placement θ1 varies as a function of k. In the limit k goes to 
infinity, the placement solution is the same as (19) with θ1 
= -θ2 = 45o. That is, the two sensors maintain an angular 
separation of 90o and symmetric about a principal axis of 
the error ellipse. 

The above analysis leads to an optimal strategy to the 
placement of two cooperative sensors. From (15b), we 
have: 

k
ab 2

2
2

2
2

1
2

1
2

~)(sincossincos σθθθθ −=−+−
 

(21a) 

k
ab 2

21

~)(2cos2cos σθθ −=+
 

(21b) 

Adding the sums of (16a) squared and (21b) squared gives: 

1861



 

1
2

~)(2sin2sin2cos2cos 2

22

2121 −−=+
k
ab σθθθθ

 
(21c) 

1
2

~)()(2cos 2

42

21 −−=−
k
ab σθθ

 
(21d) 

⎥
⎦

⎤
⎢
⎣

⎡
−−=− − 1

2

~)(cos
2
1

2

42
1

21 k
ab σθθ

 
(21e) 

From the first condition of (16b), θ1 + θ2 = 0, we finally 
have: 
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The condition that 
11

2

~)(
2

42

≤−−
k
ab σ  requires 

2

~2σab
k

−
≥

, which 

leads to the same condition as (20). It can be shown that 
(21f) and (17b) are equivalent. 

Note that the optimal placement condition derived in this 
section is for a generalized sensor with h~  and 2~σ , which 
can represent either a ranging error or a bearing-only 
sensor. In the latter case, if a sensor’s LOS vector to target 
has an angle ϕ with respect to the x-axis, then the 
observation vector’s angle is given by θ = ϕ ± π /2. The 
equivalent measurement error is given by 22~ σσ r=  as listed 
in Table 1. 

3.3 Two Co-Located Heterogeneous Sensors 

In this section, we consider two sensors co-located on a 
same sensor platform. The two sensors are of different 
types with different measurement qualities, one providing 
ranging and the other bearing-only measurements. Given a 
prior about the unknown target x ~ N(x0, P0), we want to 
determine where to place the sensor platform x1 relative to 
x0 and to take how many independent measurements so as 
to obtain maximum updated information matrix. 

Again, the coordinate axes can be rotated to align with the 
principal axes of P0, leading to the prior in the diagonal 
form denoted by M0 = P0

-1 = diag([a, b]). Around x0, we 
can linearize the measurement equations for the two 
sensors, leading to observation matrices h1 = [cosθ, sinθ]T 
and h2 = [sinθ, cosθ]T with measurement errors σ1

2 and σ2
2, 

respectively. What are k and θ that result in the maximum 
updated information matrix? 

To start, the updated information matrix is: 

TT

r
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0  hhhhMM
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where r = ||x1 - x0||2 is the predicted range from the sensor 
to target. Eq. (22) can be further written as: 
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The determinant of M is given by: 
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The goal is to maximize det(M) (equivalent to minimize 
det(P)). Since the second term on the right hand side of 
(24b) is always negative, it can be nullified when θ = 0o or 
90o. 

When θ = 0o or 90o, (24b) becomes: 
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The difference between the two values of (25) can be 
evaluated, for a > b, as: 
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The above analysis indicates that the number of updates k 
does not affect the optimal placement and the optimal 
sensor pointing is either along the first principal axis or 
perpendicular to it. When a > b, that is, the largest 
eigenvalue along the y-axis, the sensor should be placed at 
θ = 0o if r2σ2

2 < σ2
2, that is, the cross-ranging error (along 

the y-axis) is smaller than the ranging error (along the x-
axis). This strategy advocates updating the largest error 
direction with the best measurement. In essence, sensors 
are added such that the posterior M remains diagonal and 
the eigenvalue spread is as small as possible. 

3.4 Two Heterogeneous Sensors 

In this section, we consider a more general case with two 
heterogeneous sensors. We start with diagonal information 
matrix prior M0 = diag([a, b]), which is obtained by 
rotating the coordinate axes along with the principal axes of 
an arbitrary prior. 

Two sensors are placed at 
1

~h  = [cosθ1, sinθ1]T and 
2

~h  = 
[cosθ2, sinθ2]T with their effective measurement errors 
being 2

1
~σ  and 2

2
~σ , respectively. Assume a number of k 

independent updates are taken in the placement to 
accumulate the needed gain (accuracy). 
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The resulting updated information matrix can be written as: 
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(27b) 

To make (27b) a scaled identity matrix, we need find k, θ1, 
and θ2 such that: 
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From the condition (28a), we have: 
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From (28b), we have: 
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The sum of (29b) and (30b), after easy manipulation, leads 
to: 
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αθθ += 21 22  (31b) 
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Brining (31b) to (29a) gives: 
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The above analysis shows a closed form solution for 2-D 
optimal placement of 2 sensors. However, there may be no 

single look update (i.e., k = 1) to achieve an instantaneous 
optimality. 

But a number of independent updates can be used to 
accumulate the required gain to ensure a solution. From 
(31a), the number is given by: 
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(34) 

The upper bound in (34) only limits k to achieve a scaled 
identity information matrix, not on the ability to further 
increase the information matrix, which has no limit on k. 

Within the bounds in (34), for each k, there is a pair of 
optimal angular placements {θ1, θ2} as given by (32d) and 
(32e). 

Since the optimal placement condition is derived for 
generalized sensors, h~  and 2~σ  can represent either a 
ranging error or a bearing-only sensor. Again in the latter 
case, if a sensor’s LOS vector to target has an angle ϕ with 
respect to the x-axis, then the observation vector’s angle is 
given by θ = ϕ ± π /2. The equivalent measurement error is 
given by 22~ σσ r=  as listed in Table 1. 

3.5 Generalization of Existence Conditions 

In [1], a condition on ranges of bearing-only sensors is 
formulated (see (43) in Theorem 9, [1]), which determines 
if it is possible or not to get all the eigenvalues equal so as 
to maximize the determinant of the FIM. If not, it requires 
that one sensor, which is much closer to target than the rest, 
be π/2 to all other sensors that must stay collinear. 

The condition for the remaining sensors to be collinear is 
equivalent to a single sensor having the same LOS vector 
with an equivalent range to target. It is also equivalent to a 
single sensor making multiple independent observations so 
that the resulting variance-weighted inverse range is 
comparable to the closer sensor. Either equivalence enables 
FIM to be diagonalized. The condition becomes a two-
sensor scenario, which is similar to what is presented in 
Section 3.1 and 3.3. 

A generalization of the condition (43) of Theorem 9 in [1] 
is as follows. For m sensors with variance 2~

iσ , i = 1, …, m, 
The conditions of Theorem 1 can be achieved for k 
measurement if 
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and for sensor j that produces the smallest measurement 
error variance 2~

jσ , 

∑
≠=

+
−

≤
m

jii ij k
ba

,1
22 ~

1
~
1

σσ  (35b) 

1863



 

Note the first condition (35a) puts a lower bound on a 
possible k and the second term (35b) put the upper bound.  
For two sensors, this is equivalent to (34). 

4. Simulation Examples 
In this section, three examples are used to illustrate the 
optimal placement conditions derived in previous sections. 

Example 1. When the prior covariance is not circular, 
placing sensors evenly all around the error ellipse is not an 
optimal approach. Similarly, optimizing the angular 
orientation of a sensor, one measurement at a time, is not 
an optimal strategy, either. These two points are illustrated 
by the following numerical example in contrast to the 
optimal condition given in Section 3.2. 

Consider the prior covariance P0 = [20 0; 0 1] and two 
sensor updates with equal effective measurement error 

1~ 2 =σ . Following the optimal single sensor update strategy 
of selecting the angular orientation that aligns with the 
maximum eigenvector, the updated error covariance is 
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This choice of angular positions for the two sensors 
surrounds the target and the resulting performance 
measures for P are tp1 = trace(P) = 1.4524 and dp1 = det(P) 
= 0.4762. The corresponding performance measures for M 
are tm1 = trace(M) = 3.05 and dm1 = det(M) = 2.30.  

However, it is possible to position the sensors to provide a 
tighter covariance error. Namely, 
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From (36), it is easy to see that the placement angles are θ1 
= -θ2 = 30.8203o. For this placement, the performance 
measures for P are tp2 = trace(P) = 1.3115 and dp2 = det(P) 
= 0.4300. The corresponding performance measures for M 
are tm2 = trace(M) = 3.05 and dm2 = det(M) = 2.3256. 
Clearly, under the same measurement quality (tm1 = tm2 = 
3.05), the second choice is better (dm2 = 2.3256 > dm1 = 
2.3). 

Fig. 1 shows the color-coded surface of the determinant of 
the updated FIM (14a) as a function of for θ1 and θ2 for this 
example with M0 = [0.05 0; 0 1] and 1~ 2 =σ . Dark red 
areas indicate large values whereas dark blue areas indicate 
small values. 

As shown, there are four pairs of maximum values. The 
first pair occurs when θ1 = 30.8203o and θ2 = 149.1797o 
and 329.1797o, respectively. Note that the two values of θ2 
are off by 180o, thus being along the same direction. For 
the second pair, the peaks appear at θ1 = 149.1797o and θ2 
= 30.8203o and 210.8203o, respectively. Again the two 
values of θ2 are off by 180o. It is clear that the value of θ1 
for the second pair is in fact that of θ2 in the first pair. θ1 
and θ2 switch their positions in the two pairs. Finally, the 
third and fourth pairs are repeated patterns of the first and 
second pairs with 180o in θ1. 

 

Fig. 1. Determinant of Updated FIM vs. θ1 and θ2 
for Given M0 and 2~σ  (Example 1) 

Fig. 2. Determinant of Updated FIM vs. θ1 and θ2 
for Given M0 and 2~σ (Example 2, k = 1) 

Fig. 3. Determinant of Updated FIM vs. θ1 and θ2 
for Given M0 and 2~σ  (Example 2, k = 2) 

Fig. 4. Determinant of Updated FIM vs. θ1 and θ2 
for Given M0 and 2~σ  (Example 3, k = 1) 

Fig. 5. Determinant of Updated FIM vs. θ1 and θ2 
for Given M0 and 2~σ (Example 3, k = 2) 

Fig. 6. Determinant of Updated FIM vs. θ1 and θ2 
for Given M0 and 2~σ  (Example 3, k = 3 
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Example 2. In the second example, we still have M0 = 
[0.05 0; 0 1] but 3~2 =σ . It is easy to verify from (18) that 
there is no single-look optimal placement. The color-coded 
surface of the determinant of the updated FIM as a function 
of for θ1 and θ2 for this example with k = 1 is shown in Fig. 
2. The largest values occur at θ1 = 0o (θ1 = 180o) and θ2 = 
0o and 180o, respectively, meaning along the largest 
eigenvalue direction. 

However, if the sensors take two independent 
measurements per placement, the resulting updated FIM is 
shown in Fig. 3. The first pair of peaks occur at (θ1 = 
22.2807o, θ2 = 337.7193o) and (θ1 = 22.2807o, θ2 = 
157.7193o) where the two values θ2 are off by 180o, 
pointing to the same direction. 

The second pair of peaks occur when θ1 and θ2 just switch 
their values, that is, (θ1 = 157.7193o, θ2 = 202.2807o) and 
(θ1 = 157.7193o, θ2 = 22.2807o). Again, the two values θ2 
are off by 180o, pointing to the same direction. 

The third and fourth pairs repeat the first and second pairs 
every 180o as discussed in Example 1 and they actually 
point to the same direction. 

Example 3. In the third example, we still have M0 = [0.05 
0; 0 1] but 2~2

1 =σ  and 6~2
2 =σ . It is easy to verify from (34) 

that there is no single-look optimal placement. The color-
coded surface of the determinant of the updated FIM as a 
function of for θ1 and θ2 for this example with k = 1 is 
shown in Fig. 4. As in Example 2 (Fig. 2), when the 
optimal condition is not met, the peaks occur at θ1 = 0o (θ1 
= 180o) and θ2 = 0o and 180o, respectively, meaning along 
the largest eigenvalue direction. 

However, if the sensors take two independent 
measurements per placement, the resulting updated FIM is 
shown in Fig. 5 for k = 2. The first pair of peaks occur at 
(θ1 = 43.7034o, θ2 = -10.4142o) and (θ1 = 43.7034o, θ2 = 
169.5858o) where again the two values θ2 are off by 180o. 
The second to fourth pairs of peaks appear following the 
same patterns as discussed in previous examples. 

When k ≥ 3, the optimal condition (34) does not hold. 
Indeed, the resulting updated FIM with three independent 
measurements is shown in Fig. 6. As shown, when the 
optimal condition is not met, the peaks occur at θ1 = 90o (θ1 
= 270o) and θ2 = 0o and 180o, respectively. This indicates 
the desired updates are along the two eigenvalue directions. 

5. Conclusions 
In this paper we derived conditions for optimal placement 
of two heterogeneous sensors in tracking of uncertain 
targets over several time steps. The conditions were derived 
based on the maximization of the updated Fisher 
information matrix from an arbitrary prior characterizing 
the uncertainty about the initial location of a target. The 

two heterogeneous sensors can be of the same or different 
types such as ranging sensors, bearing-only sensors, or 
both. The sensors can also offer measurements of different 
qualities. The results presented in this paper complement 
other recently published work on instantaneous optimal 
placement that considered same sensor types and same 
measurement qualities for targets at perfectly known 
locations or with the target location uncertainty averaged 
out via the expected value of the determinant of the Fisher 
information matrix. 

Future work will consider the cases where two cooperative 
mobile sensors take their measurements neither at the same 
rate nor at the same time where two numbers of 
independent update k1 and k2 can used to account for this 
asynchronous nature of operations with distributed sensors. 
Another effort is to extend the results of this paper to m > 2 
sensors. In the spirit of [2], one may take the expectation of 
a matrix measure of choice and one choice is the trace of 
the inverse of M. It is of great interest to bring in such 
aspects as placement costs and risks into consideration, 
which will be another direction of our future study. 
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